## Solution 3

1. A bounded function $f$ on $[a, b]$ is said to be locally Lipschitz continuous at $x \in[a, b]$ if there exist some $L$ and $\delta$ such that

$$
|f(y)-f(x)| \leq L|x-y|, \quad \forall y \in(x-\delta, x+\delta)
$$

Show that $f$ is Lipschitz continuous at $x$.
Solution. For $y$ lying outside $(x-\delta, x+\delta),|y-x| \geq \delta$. Therefore,

$$
|f(y)-f(x)|=\frac{|f(y)-f(x)|}{|y-x|}|y-x| \leq \frac{2\|f\|_{\infty}}{\delta}|y-x|
$$

Hence.

$$
|f(y)-f(x)| \leq L^{\prime}\left(|y-x|, \quad \forall y, \quad L^{\prime}=\max \left\{L, 2\|f\|_{\infty} / \delta\right\}\right.
$$

2. Let $f$ be a function defined on $(a, b)$ and $x_{0} \in(a, b)$.
(a) Show that $f$ is Lipschitz continuous at $x_{0}$ if its left and right derivatives exist at $x_{0}$.
(b) Construct a function Lipschitz continuous at $x_{0}$ whose one sided derivatives do not exist.

Solution. (a) Let $\alpha=f_{+}^{\prime}\left(x_{0}\right)$ and $\beta=f_{-}^{\prime}\left(x_{0}\right)$. For $\varepsilon=1>0$, there exists $\delta_{1}$ such that

$$
\left|\frac{f(x+z)-f(x)}{z}-\alpha\right|<1
$$

for $0<z<\delta_{1}$. It follows that

$$
|f(x+z)-f(x)| \leq|f(x+z)-f(x)-\alpha z|+|\alpha z| \leq(1+|\alpha|)|z|
$$

Similarly,

$$
|f(x+z)-f(x)| \leq(1+|\beta|)|z|, \quad z \in\left(-\delta_{2}, 0\right)
$$

We conclude that $|f(x+z)-f(x)| \leq(1+\gamma)|z|, \quad z \in(-\delta, \delta), \delta=\min \left\{\delta_{1}, \delta_{2}\right\}, \gamma=$ $\max \{|\alpha|,|\beta|\}$. By Problem 1, it is Lipschitz continuous at $x_{0}$.
(b) The function $f(x)=x \sin \frac{1}{x}(x \neq 0)$ and $=0$ at $x=0$. It is Lipschitz continuous at $x_{0}=0$ with $L=1$ but both one-sided derivatives do not exist.
3. Can you find a cosine series which converges uniformly to the sine function on $[0, \pi]$ ? If yes, find one.
Solution. Yes, extend the sine function on $[0, \pi]$ to $|\sin x|$, an even, $2 \pi$-periodic function. Since it is continuous, piecewise $C^{1}$, its cosine series converges uniformly to this extended function. In particular, this cosine series converges uniformly to $\sin x$ on $[0, \pi]$.
4. A sequence $\left\{a_{n}\right\}, n \geq 0$, is said to converge to $a$ in mean if

$$
\frac{a_{0}+a_{1}+\cdots+a_{n}}{n+1} \rightarrow a, \quad n \rightarrow \infty
$$

(a) Show that $\left\{a_{n}\right\}$ converges to $a$ in mean if $\left\{a_{n}\right\}$ converges to $a$.
(b) Give a divergent sequence which converges in mean.

Solution. (a) For $\varepsilon>0$, there is some $n_{0}$ such that $\left|a_{n}-a\right|<\varepsilon$ for all $n>n_{0}$. Now

$$
\begin{aligned}
\left|\frac{a_{0}+\cdots+a_{n}}{n+1}-a\right| & =\left|\frac{a_{0}+\cdots+a_{n_{0}}}{n+1}+\frac{a_{n_{0}+1}+\cdots+a_{n}}{n+1}-a\right| \\
& =\left|\frac{a_{0}+\cdots+a_{n_{0}}}{n+1}+\frac{\left(a_{n_{0}+1}-a\right)+\cdots+\left(a_{n}-a\right)}{n+1}-\frac{n_{0}+1}{n+1} a\right| \\
& \leq \frac{n-n_{0}}{n+1} \varepsilon+\frac{a_{0}+\cdots+a_{n_{0}}}{n+1}+\frac{n_{0}+1}{n+1} a \\
& \leq 2 \varepsilon,
\end{aligned}
$$

after taking $n \geq n_{1}$ for a much larger $n_{1}$.
(b) Consider the sequence $\left\{(-1)^{n}\right\}$.
5. Let $D_{n}$ be the Dirichlet kernel and define the Fejer kernel to be $F_{n}(x)=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(x)$.
(a) Show that

$$
F_{n}(x)=\frac{1}{2 \pi(n+1)}\left(\frac{\sin \left(\frac{n+1}{2}\right) x}{\sin x / 2}\right)^{2}, \quad x \neq 0
$$

(b) Let

$$
\sigma_{n} f(x)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k} f(x)
$$

Show that for every $x \in[-\pi, \pi], \sigma_{n} f(x)$ converges uniformly to $f(x)$ for any continuous, $2 \pi$-periodic function $f$. Hint: Follow the proof of Theorem 1.5 and use the non-negativity of $F_{n}$.

Solution. (a) Use $2 \sin z / 2 \sin (k / 2+1) z=\cos k z-\cos (k+1) z$ and $1-\cos (n+1) z=$ $2 \sin ^{2} \frac{n+1}{2} z$ to get it.
(b) Note that $\int_{-\pi}^{\pi} F_{n}(z) d z=1$ as it holds for $D_{n}$. Proceeding as in the proof of Theorem 1.5,

$$
\begin{aligned}
\left(\sigma_{n} f\right)(x)-f(x)= & \int_{-\pi}^{\pi} F_{n}(z)(f(x+z)-f(x) d x \\
= & \frac{1}{2 \pi(n+1)} \int_{-\pi}^{\pi} \Phi_{\delta}(z) \frac{\sin ^{2}\left(\frac{n+1}{2} z\right)}{\sin ^{2} z / 2}(f(x+z)-f(x)) d z \\
& +\frac{1}{2 \pi(n+1)} \int_{-\pi}^{\pi}\left(1-\Phi_{\delta}(z)\right) \frac{\sin ^{2}\left(\frac{n+1}{2} z\right)}{\sin ^{2} z / 2}(f(x+z)-f(x)) d z \\
= & I+I I
\end{aligned}
$$

For the first term, for $\varepsilon>0$, there is some $\delta$ such that $|f(y)-f(x)|<\varepsilon$, for $y,|y-x|<\delta$. Thus,

$$
\begin{aligned}
|I| & \leq\left|\int_{-\delta}^{\delta} \Phi_{\delta}(z) F_{n}(z)(f(x+z)-f(x)) d z\right| \\
& \leq \varepsilon \int_{-\delta}^{\delta} F_{n}(z) d z \\
& \leq \varepsilon \int_{-\pi}^{\pi} F_{n}(z) d z \\
& =\varepsilon
\end{aligned}
$$

The second is easy to handle: For this fixed $\delta$,

$$
|I I| \leq \frac{1}{2 \pi(n+1)} \times \frac{1}{\sin ^{2} \delta / 4} \times 2\|f\|_{\infty} \rightarrow 0
$$

as $n \rightarrow \infty$.
6. Let $f$ and $g$ be two continuous, $2 \pi$-periodic functions whose Fourier series are the same. Prove that $f \equiv g$.
Solution. Replacing $f-g$ by a single $f$, it suffices to show that $f \equiv 0$ if its Fourier series vanishes identically. Indeed, from $\int_{-\pi}^{\pi} f(x) e^{i n x} d x=0$ for all $n \in \mathbb{Z}$ we know that

$$
\int_{-\pi}^{\pi} f(x) g(x) d x=0
$$

for all finite trigonometric series $g$. As $f$ is continuous, by Weierstrass approximation theorem, for every $\varepsilon>0$, there is a such $g$ satisfying $\|f-g\|_{\infty}<\varepsilon$. Therefore,

$$
\begin{aligned}
\left|\int_{-\pi}^{\pi} f^{2}(x) d x\right| & \leq\left|\int_{-\pi}^{\pi} f(x)(f(x)-g(x)) d x\right|+\left|\int_{-\pi}^{\pi} f(x) g(x) d x\right| \\
& \leq \varepsilon \int_{-\pi}^{\pi}|f(x)| d x
\end{aligned}
$$

Since $\varepsilon>0$ can be arbitrarily small, $\int_{-\pi}^{\pi} f^{2}=0$, so $f \equiv 0$.
7. Let $f, g \in R_{2 \pi}$ whose Fourier series are the same. Show that $\int_{-\pi}^{\pi}(f-g)^{2}(x) d x=0$ and conclude that $f$ and $g$ are equal almost everywhere.
Solution. Replacing $f-g$ by a single $f$, it suffices to show that $\int_{-\pi}^{\pi} f^{2}=0$ if its Fourier series vanishes identically. Indeed, as in the previous problem, $\int_{-\pi}^{\pi} f g=0$ for all finite trigo series $g$. By Weierstrass approximation theorem, this relation holds for all continuous $g$. Now, for a characteristic function $\chi_{[a, b]}$ we consider the continuous piecewise linear function $g$ which is equal to 1 on $[a+\delta, b-\delta]$ and vanishes outside $[a, b]$. Then, from

$$
\int_{-\pi}^{\pi} f \chi_{[a, b]} d x=\int_{-\pi}^{\pi} f\left(\chi_{[a, b]}-g\right) d x+\int_{-\pi}^{\pi} f g d x=\int_{-\pi}^{\pi} f\left(\chi_{[a, b]}-g\right) d x
$$

we get

$$
\left|\int_{-\pi}^{\pi} f \chi_{[a, b]} d x\right| \leq \int_{-\pi}^{\pi}\left|f\left\|\chi_{[a, b]}-g \mid d x \leq 2\right\| f \|_{\infty} \delta\right.
$$

Since $\delta>0$ is arbitrarily small, we conclude $\int_{-\pi}^{\pi} f \chi_{[a, b]} d x=0$. It follows that $\int_{-\pi}^{\pi} f s d x=$ 0 for all step functions. Choosing the "Darboux lower sum" sequence $s(x)=\sum_{j} m_{j} \chi_{I_{j}}(x)$ which approximate $f$ from below and satisfy

$$
\int_{-\pi}^{\pi}(f-s) d x \rightarrow 0
$$

we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} f^{2} d x & =\left|\int_{-\pi}^{\pi} f(f-s) d x+\int_{-\pi}^{\pi} f s d x\right| \\
& =\left|\int_{-\pi}^{\pi} f(f-s) d s\right| \\
& \leq\|f\|_{\infty}\left|\int_{-\pi}^{\pi}(f-s) d x\right| \\
& \rightarrow 0
\end{aligned}
$$

Note. Problems 6 and 7 provide a proof to the uniqueness theorem stated in Section 1.2 in our lecture notes.

